一、选择题
1.【2016广东省深圳市二模】如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,再分别以B、F为圆心,大于 BF的长为半径画弧,两弧相交于点G,若BF=6,AB=5,则AE的长为( )
A.11 B.6 C.8 D.10
【答案】C
考点:1、平行四边形的性质与判定,2、垂直平分线的性质,3、勾股定理
2.【2016广东省深圳市南山区二模】如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
A. B. C. D.
【答案】D
【解析】
试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB 的垂直平分线上,于是可判断D选项正确.
故选D.
考点:作图—复杂作图
二、填空题
1.【2016广东省汕头市金平区一模】如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为 .
【答案】45°
考点:图形的翻折变换
2.【2016广东省东莞市二模】如图,在▱ABCD中,AB= ,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为 .
【答案】3
考点:1、翻折变换(折叠问题);2、平行四边形的性质
三、解答题
1.【2016广东省广州市番禹区】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于D.
(1)动手操作:利用尺规作⊙O,使⊙O经过点A、D,且圆心O在AB上;并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);
(2)综合应用:在你所作的图中,
①判断直线BC与⊙O的位置关系,并说明理由;
②若AB=6,BD=2 ,求线段BD、BE与劣弧 所围成的图形面积(结果保留根号和π).
【答案】(1)图形见解析(2)①相切;②2 ﹣ π
【解析】
试题分析:(1)根据题意得:O点应该是AD垂直平分线与AB的交点;
(2)①由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;
②设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为: =2 ﹣ π”.
试题解析:(1)如图1;
(2)①如图1,连接OD,
∵OA=OD,
∴∠OAD=∠ADO,
∵∠BAC的角平分线AD交BC边于D,
∴∠CAD=∠OAD,
∴∠CAD=∠ADO,
∴AC∥OD,
∵∠C=90°,
∴∠ODB=90°,
∴OD⊥BC,
即直线BC与⊙O的切线,
∴直线BC与⊙O的位置关系为相切;
考点:圆的综合题
2.【2016广东省汕头市澄海区一模】如图,在△ABC中,∠C=90°,∠B=30°.
( 1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);
(2)计算 的值.
【答案】(1)作图见解析(2)1:3
(2)∵在Rt△A CD中,∠CAD=30°,
∴CD= AD.
∴BC=CD+BD=CD+AD=3CD.
∴ = , = .
∴ = : =1:3.
考点:作图—基本作图
3.【2016广东省汕头市金平区一模】有一副直角三角板,在三角板ABC中,∠BAC=90°,∠C=60°,AB=6,在三角板DEF中,∠FDE=90°,∠E=45°,EF=6.将这副直角三角板按如图1所示位置摆放,点A与点F重合,点E、F、A、C在同一条直线上.现固定三角板ABC,将三角板DEF以每秒1个单位的速度沿边AC匀速运动,DF与AB相交于点M.
(1)如图2,连接ME,若∠EMA=67.5°,求证:△DEM≌△AEM;
(2)如图3,在三角板DEF移动的同时,点N从点C出发,以每秒2个单位长度的 速度沿CB向点B匀速移动,当三角板DEF的顶点D移动到AB边上时,三角板DEF停止移动,点N也随之停止移动.连接FN,设四边形AFNB的面积为y,在三角板DEF运动过程中,y存在最小值,请求出y的最小值;
(3)在(2)的条件 下,在三角板DEF运动过程中,是否存在某时刻,使E、M、N三点共线,若存在,请直接写出此时AF的长;若不存在,请直接回答.
【答案】(1)证明见解析(2) (3)不存在
【解析】
试题分析:(1)只要证明∠MED=∠MEA=22.5°,即可利用AAS证明△DEM≌△AEM.
(2)如图2中,作FG⊥CB,垂足为G.设AF=x,则CN=2x,想办法构建二次函数,利用二次函数性质解决问题.
(3)不存在.假设存在,推出矛盾即可.
试题解析:(1)如图2中,∵∠EMA=67.5°,∠BAE=90°
∴∠MEA=90°﹣∠EMA=90°﹣67.5°=22.5°,
∴∠MED=∠DEA﹣∠EMA=45°﹣22.5°=22.5°=∠MEA,
在△EMD和△EMA中,
,
∴△DEM≌△AEM.
∴y的最小值为 .
考点:1、三角形综合题、2、全等三角形的判定和性质、3、二次函数、4、勾股定理、5、平行线性质
4.【2016广东省广州市华师附 中一模】两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.
(1)点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
(2)点C到公路ME的距离为2km,设AB的垂直平分线交ME于点N,点M处测得点C位于点M的北偏东60°方向,在N处没得点C位于点N的北偏西45°方向,求MN的长(结果保留根号)
【答案】(1)作图见解析(2)2 +2km
【解析】
试题分析:(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C;
(2)作CD⊥MN于点D.由三角函数得出MD= CD,DN=CD,于是得到结论.
考点:1、解直角三角形的应用-方向角问题;2、线段垂直平分线的性质
5.【2016广东省广州市海珠区一模】如图,四边形ABCD是平行四边形.
(1)利用尺规作∠ABC的平分线BE,交AD于E(保留作图痕迹,不写作法);
(2)在(1)所作的图形中,求证:AB=AE.
【答案】(1)作图见解析(2)证明见解析
【解析】
考点:1、平行四边形的性质,2、角平分线的作图,3、等腰三角形的判定
6.【2016广东省揭阳市普宁市二模】如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm.
(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹);
(2)求弧AB的长及扇形OAB的面积.
【答案】(1)作图见解析(2)4π,12π
【解析】
试题分析:(1)连接AB,作弦AB的垂直平分线即可作出扇形的对称轴;
(2)利用弧长的计算公式和扇形的面积公式可得结果.
试题解析:(1)如图所示:
(2) 的长度: =4π(cm);
= =12π(cm2).
考点:扇形有关的计算
7.【2016广东省揭阳市普宁市二模】如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
【答案】(1)(4 ,4)(2)证明见解析(3)1
继而可得四边形ABCD是平行四边形;
(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8﹣x,然后根据勾股定理可得方程
(8﹣x)2=x2+(4 )2,解此方程即可求得OG的长.
∵DB=DO=4
∴DB=AB=4
∴∠BDA=∠BAD=120°÷2=60°,
∴∠ADB=60°,
∵△OBC是等边三角形,
∴∠OBC=60°,
∴∠ADB=∠OBC,
即AD∥BC,
∴四边形ABCE是平行四边形;
(3)设OG的长为x,
∵OC=OB=8,
∴CG=8﹣x,
由折叠的性质可得:AG=CG=8﹣x,
在Rt△AOG中,AG2=OG2+OA2,
即(8﹣x)2=x2+(4 )2,
解得:x=1,
即OG=1.
考点:1、折叠的性质,2、三角函数的性质,3、平行四边形的判定,4、等边三角形 的性质,5、勾股定理
8.【2016广西贵港市三模】如图矩形ABCD中,点E在BC上,且AE=EC,试分别在下列两个图中按要求使用无刻度的直尺画图(保留作图痕迹).
(1)在图1中,画出∠DAE的平分线;
(2)在图2中,画出∠AEC的平分线.
【答案】作图见解析
考点:作图﹣基本作图
9.【2015广西桂林市模拟】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
【答案】图形见解析
考点:作图题
10.【2016广东省深圳市龙岭期中】如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.
(1)求证:DE=AB.
(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求 的长.
【答案】(1)证明见解析(2)
∵DE⊥AF,
∴∠AED=90°,
在△ADE和△FAB中, ,
∴△ADE≌△FAB(AAS),
∴DE=AB;
∵DE⊥AF,
∴∠AED=90°,
∴∠ADE=30°,
∵△ADE≌△FAB,
∴AE=BF=1,
∴DE= AE= ,
∴ 的长= = .
考点:1、全等三角形的判定与性质;2、含30度角的直角三角形;3、矩形的性质;4、弧长的计算
11.【2016广东省深圳市龙岭期中】在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
【答案】证明见解析
试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE与△AFE中,
,
∴△AGE≌△AFE(SAS);
(2)设正方形ABCD的边长为a.
将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
则△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均为等腰直角三角形,
∴CE=CF,BE=BM,NF= DF,
∴a﹣BE=a﹣DF,
∴BE=DF,
∴BE=B M=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵ EG=EF,MG= BM= DF=NF,
∴EF2=ME2+NF2;
考点:四边形综合题
12.【2016广东省汕头市潮南区模拟(B卷】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.连接BD,求证:BD平分∠CBA.
【答案】(1)作图见解析(2)证明见解析
(2)∵DE是AB边上的中垂线,∠A=30°,
∴AD=BD,
∴∠ABD=∠A=30°,
∵∠C=90°,
∴∠ABC=90°﹣∠A=90°﹣30°=60°,
∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,
∴∠ABD=∠CBD,
∴BD平分∠CBA.
考点:线段垂直平分线
13.【2016广东省东莞市虎门市模拟】如图,已知△ABC中,点D在边AC上,且BC=CD
(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);
(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.
【答案】(1)作图见解析(2)证明见解析
(2)∵CP是∠ACB的平分线
∴∠DCE=∠BCE.
在△CDE和△CBE中,
,
∴△DCE≌△BCE(SAS),
∴BE=DE.
考点:1、尺规作图,2、角平分线的性质
14.【2016广东省潮州市潮安区一模】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交 AB于点E.(保留作图痕迹,不要求写作法和证明)
(2)连接BD,求证:DE=CD.
【答案】(1)作图见解析(2)证明见解析
考点:基本作图
15.【2016广东省模拟(一)】如图,A是∠MON边OM上一点,AE∥ON.
(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)中,过点A画OB的垂线,垂足为点D,交 ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.
【答案】(1)作图见解析(2)证明见解析
【解析】
试题分析:(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.
(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB即可.
试题解析:(1)如图,射线OB为所求作的图形.
∴△ADB≌△CDO,AB=OC.
∵AB∥OC,
∴四边形OABC是平行四边形.
∵AO=AB,
∴四边形OABC是菱形.
考点:1、菱形的判定;2、全等三角形的判定
16.【2016广东省模拟(一)】如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
【答案】(1 )y=﹣x2+2x+3;(2)9(3)相似
(2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G.
由顶点坐标公式得顶点坐标为D(1,4)
设对称轴与x轴的交点为F
∴四边形ABDE的面积=
= A O•BO+ (BO+DF)•OF+ EF•DF
= ×1×3+ ×(3+4)×1+ ×2×4
=9;