初三数学下册《函数与它的表示法》知识点青岛版
函数的概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:
如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
函数的定义域、值域要写成集合或区间的形式。
(补充)定义域:
能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1;
(5)如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是使各部分都有意义的x的值组成的集合;
(6)指数为零底不可以等于零;
(7)实际问题中的函数的定义域还要保证实际问题有意义。
注意:求出不等式组的解集即为函数的定义域。
文章